- 44 Wilkens, J. L., Mercier, A. J., and Evans, J., Cardiac and ventilatory responses to stress and to neurohormonal modulators by the shore crab, *Carcinus maenas*. Comp. Biochem. Physiol. 82 C (1985) 337– 343.
- 45 Wilkens, J. L., and Walker, R. L., Nervous control of crayfish cardiac hemodynamics, in: Comparative Physiology, vol. 11. Eds R. B. Hill, K. Kuwasawa and B. R. McMahon. Karger, Basel 1992.
- 46 Wilkens, J. L., and Young, R. E., Regulation of pulmonary blood flow and of blood pressure in a mangrove crab (*Goniopsis cruentata*). J. exp. Biol. 163 (1992) 297-316.

0014-4754/92/090827-08\$1.50 + 0.20/0 © Birkhäuser Verlag Basel, 1992

Intrinsic and extrinsic neural and neurohumoral control of the decapod heart

T. Yazawa and K. Kuwasawa

Department of Biology, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-03 (Japan)

Abstract. The intra-cardiac nervous system of the decapod heart is composed of large and small ganglionic cells (LGCs and SGCs) and axons of extrinsic cardio-acceleratory and -inhibitory neurons (CAs and CIs). Candidate neurotransmitters for the neurons have been determined by pharmacological, cytochemical and immunocytochemical tests. SGCs may be cholinergic, LGCs and CAs are probably dopaminergic, and CIs are GABAergic. Serotonin and octopamine were cardio-excitatory neuromodulators of the heart. Proctolin, crustacean cardio-active peptide (CCAP), red pigment concentrating hormone (RPCH), and FMRFamide also had modulatory actions on the heart. Proctolin was the most potent peptide, which acted primary on the cardiac ganglion. Insect adipokinetic hormones had little effect on the heart.

Key words. Decapod heart; cardiac ganglion; cardio-acceleratory neuron; cardio-inhibitory neuron; neurotransmitters; neurohormones; neuropeptide.

Introduction

Since Carlson⁵ reviewed studies on invertebrate hearts, a considerable number of papers on the neuroanatomy, physiology and pharmacology of crustacean hearts have been published. Those include studies of various cardioactive substances. Cooke 7, however, concluded in his review that the neurotransmitters are not established. The neuronal constituents of the intra-cardiac nervous system are small and large ganglionic cells (SGCs and LGCs, respectively) composing the cardiac ganglion itself, and axons of cardio-acceleratory and -inhibitory neurons (CAs and CIs, respectively) running from the central nervous system to make synaptic contact with the ganglion and myocardium. Activities of the neural constituents and the myocardium are modulated by neurohormones which are liberated by the neuro-secretory tissue, the pericardial organ, into the blood of pericardial sinus. Serotonin, octopamine and proctolin are major neurohormones found in the pericardial organ (see Cooke and Sullivan⁹ for review).

In this report, we will describe effects of a variety of putative neurotransmitters and humoral substances on the heart of hermit crabs, and propose the most likely candidates for natural neurotransmitters of extrinsic inhibitory and acceleratory axons and of intrinsic LGCs and SGCs. Preliminary studies have appeared elsewhere ^{63,64}.

Materials and methods

Giant marine hermit crabs (Aniculus aniculus and Dardanus crassimanus) were treated as reported before ^{59, 64}. As far as the present report is concerned, there was no significant difference between the two species.

Electrophysiological and pharmacological methods were the same as those described previously ⁵⁹. Filtered natural seawater and artificial seawater (NaCl 526, KCl 11, CaCl₂ 18, MgCl₂ 24 [in mM], and Tris-buffer 5 mM at pH 7.4) were used as the perfusion medium for preparations.

The following chemicals were used: acetylcholine, atscopolamine, pilocarpine, hexamethonium, ropine, nicotine, picrotoxin, serotonin, dopamine, 1-noradrenaline, yohimbin (Wako); arecoline, carbamylcholine, muscarine, muscimol, octopamine, ergonovine, chlorpromazine, apomorphine (Sigma); methacholine (Nakarai); d-tubocurarine (Tokyo Kasei); phentolamine (Ciba Geigy); haloperidol (Dai-Nippon); fluphenazine (Yoshitomi, gift); methysergide (Sandoz); crustacean cardio-active peptide (CCAP) (KosmoBio-Bachem AG); red pigment concentrating hormone (RPCH) (Funakoshi-PLI); adipokinetic hormone II of Schistocerca gregaria (AKH-II), adipokinetic hormone I of the cockroach (AKH-I), FMRFamide, proctolin (Sigma).

General neuroanatomy and physiology of the cardiac nervous system in hermit crabs

Figure 1 is a schematic drawing of the cardiac nervous system. Neurons governing the heart beat in decapods are four small ganglionic cells (SGCs) and five large ganglionic cells (LGCs) in the cardiac ganglion, and one pair of CIs and two pairs of CAs in extrinsic nerves. SGCs, the so-called pacemaker cells, innervate LGCs but do not innervate myocardial cells 59. LGCs receive synaptic inputs from SGCs and induce excitatory junction potentials (EJPs) in myocardial cells 61. LGCs possess spontaneity even if they are surgically severed from SGCs as shown in other decapods ^{29, 51, 52} (and unpublished observations). CAs innervate both LGCs 59 and SGCs 63, and also the myocardium 60. CIs innervate both LGCs 59 and SGCs 63, but not the myocardium 59. The heart is under the modulatory influences of neurohormones released from the pericardial organ (see Cooke and Sullivan⁹).

Spontaneous activities of nerve and muscle of the heart of the hermit crab are shown in figure 2. Figure 2A shows periodic bursts of impulses recorded from the main trunk of the cardiac ganglion (ER 1 site shown in fig. 1). In the trace, the small and large spikes show dis-

Figure 1. Schematic drawing of the cardiac ganglion system. Inside view of the ventrally opened heart. CI and CA, cardio-inhibitor axon and cardio-accelerator axons (illustrated only on left side); r- and l-dcn: right and left dorsal cardiac nerves; mt and ct, main trunk and circular trunk of the cardiac ganglion; aln, ln and pln: anterior lateral, lateral and posterior lateral nerves; LGCs and SGCs: large and small ganglionic cells; ER 1–ER 3: sites on the ganglion system where nerve impulses were recorded extracellularly; IR: intracellular recording from large ganglionic neurons.

charges of SGCs and LGCs respectively. In the upper record of figure 2B, two successive LGC bursts were intracellularly recorded simultaneously with extracellular LGC impulses at the site of the circular trunk of the cardiac ganglion (ER 2 site in fig. 1). The trains of SGC-evoked excitatory postsynaptic potentials (EPSPs), recorded in a LGC, were followed by bursting discharges of LGC spikes. The LGC bursts and corresponding mus-

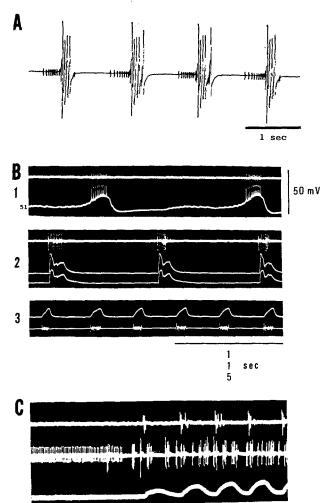


Figure 2.A Impulses from small and large ganglionic cells. An extracellular electrode was positioned at the site between the cell bodies of the 5th LGC and 1st SGC (the site ER 1 in fig. 1). Small and large impulses are respectively from SGCs and LGCs.

30 sec

B1 Simultaneous recordings of large ganglionic cells activity from the circular trunk of the cardiac ganglion at the site ER 2 in figure 1 (upper trace) and a LGC soma (lower trace). Small deflections in the lower trace show EPSPs from SGCs, which appeared prior to the burst of LGC spikes. The most hyperpolarized potential of the LGC was 51 mV.

B2 Simultaneous recording of LGC impulses from the circular trunk of the cardiac ganglion (upper trace) and corresponding compound EJPs from two muscle cells. B3 Simultaneous recording of force of the heart (upper trace) and LGC impulses from the circular trunk of the cardiac ganglion at the site ER 2 in figure 1.

C Simultaneous recording of electrocardiogram (upper trace), spontaneous impulse discharge of the dorsal cardiac nerve (dcn, at the site ER 3 in fig. 1) (middle trace), and force of the heart beat. In the dcn trace, CI impulses are smallest ones, and impulses of two CAs are larger ones. CI impulses caused cardiac arrest in the left part of the record.

cle EJPs are recorded simultaneously from two myocardial cells (fig. 2B, middle). The LGC bursts also corresponded to heart beats (fig. 2B, lower traces). Figure 2C shows simultaneous records of electrocardiogram (ECG), activities of a dorsal cardiac nerve (dcn, ER 3 site in fig.1) and heart beat. When CI impulses in dorsal cardiac nerve discharged at a high frequency, ECG and heart beat stopped completely (at the left in fig. 2C). When CI became inactive and instead CAs impulses appeared, ECG and heart beat reappeared.

In the following sections, we will describe the actions of the major classical neurotransmitters and peptide hormones.

Acetylcholine

Acetylcholine (ACh) has been shown to enhance the neurogenic heart beat in many decapod species. The cardiac ganglion of crustaceans has been considered to be a cholinergic system 30. Florey and Rathmayer 17 showed that the cardiac ganglion of Astacus and Eriphia has a muscarinic nature. On the other hand, ACh has long been postulated to be the transmitter of cardio-accelerators 7, 54. Actually, two recent reports on Homarus 18, 48 showed muscarinic cholinergic responses of LGCs. Thus, ACh has become 'a front-runner of the moment' as the candidate transmitter of the cardio-acceleratory nerves ⁷. We observed, however, that cholinergic blockers (curare, hexamethonium, and atropine) did not antagonize effects of the accelerator nerve on the cardiac ganglion in the hermit crabs 61. Since CAs innervate myocardial cells ⁶⁰ as well as LGCs ⁵⁹, we applied ACh to myocardial cells. ACh did not change the membrane potential of myocardial cells (data not shown). In Homarus, it has also been reported that cardiac muscle cells did not respond to ACh 17. Therefore, it is likely that CAs may not be cholinergic.

In the hermit crab heart, we observed that ACh depolarized LGC membrane. The response was accompanied by a decrease of membrane resistance ⁶³. LGCs responded to cholinergic agonists (arecoline, carbamylcholine, methacholine, muscarine, nicotine, pilocarpine, and tetramethylammonium) though there were differences in potency between the agonists. Thus, we considered the possibility that ACh is a neurotransmitter of some other neuronal constituent in the heart. We eventually observed that synaptic transmission from SGCs to LGCs was susceptible to cholinergic blockers such as atropine and scopolamine. Figure 3 A shows that SGCs-evoked EPSPs in a LGC were suppressed by atropine. Therefore, it is most likely that SGCs are cholinergic 64. ACh directly enhanced SGCs as well as LGCs 63. Thus, SGCs may synapse chemically with other SGCs, since SGCs are known to connect with each other in Panulirus interruptus 19 and in Panulirus japonicus 49.

Our conclusion is supported by certain points of circumstantial evidence. That SGCs do not directly innervate

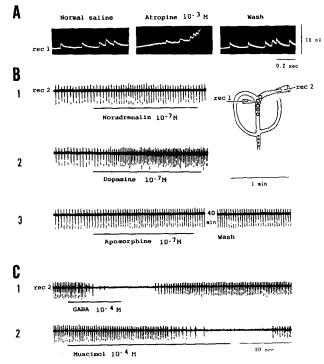


Figure 3.A SGC-induced EPSPs recorded from LGC (rec 1 in insertion). Left, in normal saline; middle, in atropine at 10^{-3} M; right, wash in normal saline. B Effects of noradrenaline (B1), dopamine (B2) and apomorphine (B3) at a concentration of 10^{-7} M on the cardiac ganglion activity of the circular trunk (rec 2 in insertion). C Effects of GABA and muscimol at a concentration of 10^{-4} M on the cardiac ganglion activity. The recording site was the same as in B but in a different preparation.

myocardial cells accords with the fact that muscle cells did not respond to ACh. Cholinesterase was present around the cell body of LGCs in certain lobsters, *Panulirus argus* and *Homarus americanus*³². Anticholinesterase excited the decapod heart and increased the action of applied ACh in *Cancer*, *Astacus*, *Panulirus*, *Homarus* and *Carcinus*²⁴. Furthermore, Sullivan and Miller ⁴⁸ demonstrated ACh synthesis in the lobster cardiac ganglion.

In *Homarus americanus*, when ACh was applied to isolated LGC, the second messenger system was activated ⁴⁶. Therefore, cholinergic cardiac ganglion receptors are probably similar to the muscarinic ACh receptor in sympathetic ganglionic neurons ⁷. We obtained evidence that forskolin at 10⁻⁴ M activated the cardiac ganglion of the hermit crab heart, although we could not specify the site of the action of forskolin (data not shown). Since it is known that, in *Homarus americanus* heart, cAMP levels are elevated by both octopamine and serotonin ¹ and by peptide neurohormone ²⁷, further investigations are necessary to determine the involvement of cAMP in any synaptic action in decapod heart.

Biogenic amines

Monoamines have excitatory effects on the heart in many decapod species ^{25, 34, 56} (see also Cooke and Sullivan ⁹

for review). Krijgsman ²⁴ suggested in his review that motoneurons (LGCs) may have adrenergic characteristics, even though there had been no unequivocal physiological and pharmacological evidence.

We, therefore, reexamined effects of monoamines on the hermit crab hearts. Dopamine, noradrenaline, adrenaline, octopamine and serotonin (5HT) have cardio-excitatory effects, on the hearts presently studied, in a dose dependent manner ⁶². Effects of dopamine, octopamine and 5HT were more potent than those of adrenaline and noradrenaline. Figure 3 B1 and 3 B2 shows the potency difference between noradrenaline and dopamine in the effects on the cardiac ganglion. An adrenergic agonist, clonidine, did not have significant effects on muscle cells and on the cardiac ganglion; nor did the beta-agonist, isoproterenol. A dopaminergic agonist, apomorphine, showed excitatory effects on the cardiac ganglion (fig. 3 B 3).

Adrenergic, serotonergic and cholinergic antagonists (phentolamine, phenoxybenzamine and yohimbin; methysergide; curare, hexamethonium and atropine, respectively) failed to block myocardial EJPs evoked by LGCs 62. However, several blockers such as ergonovine, chlorpromazine, fluphenazine and haloperidol blocked EJPs 62. Furthermore, excitatory effects of dopamine were antagonized by the dopaminergic blockers, chlorpromazine and haloperidol (unpublished observation). The results suggest that LGCs may be dopaminergic ⁶⁴. This postulate is in agreement with histochemical observations of glyoxylic acid-induced fluorescence observed in LGCs of the lobster 37 and of Aniculus 61. Immunoreactivity to an anti-serotonin antiserum was not observed in any neuronal processes inside the heart of Aniculus 63. The cardiac ganglion of the lobster was revealed as a dopamine-containing tissue by HPLC analysis and high voltage paper chromatography 37. The presence of dopamine in the cardiac ganglion of Aniculus, was confirmed by HPLC analysis (unpublished observation). On the other hand, in the studies on CAs, we reached a different conclusion from that of Sullivan and Miller 48 who pointed out the possibility that CAs are cholinergic. (Sullivan and Miller also pointed out the other possibility that intrinsic neurons are cholinergic). Our results strongly suggest that CAs are dopaminergic because dopaminergic blockers (haloperidol and chlorpromazine) but not adrenergic and serotonergic blockers (phentolamine and methysergide) eliminated excitatory effects of CA 1 and CA 2 stimulation on the cardiac ganglion ⁶². This notion agrees with the histochemical experiments on the cardiac nervous system of the hermit crabs: 1) two CA axons in the dorsal cardiac nerve were revealed as amine-containing fibers that showed glyoxylic acid-induced fluorescence; and 2) serotonin immunoreactivity was never found in any axons in the dorsal cardiac nerve 61, 63.

It is possible that two neurotransmitters are present in one neuron ^{2, 10}. However, the most prominent charac-

teristic which CAs and LGNs showed in our results was dopaminergic.

Neuroleptics, chlorpromazine and haloperidol, may block the conduction of nerve impulses ^{39, 57}. Since we monitored pre-impulses, we could exclude the possibility that the observed synaptic blockade by the drugs was brought about by a conduction block of the pre-impulses.

Biogenic amines are ubiquitous in the crustacean brain, and of these octopamine is a particularly dominating amine ²⁶. Although octopamine has strong effects on the hermit crab heart, we have no evidence that octopamine mediates neurotransmission inside the crustacean heart. For example, adrenergic (octopaminergic) blockers did not antagonize any neuro-neuronal or -muscular transmission in the heart ⁶². Octopamine probably does not have a neurotransmitter function in the neurogenic heart ²⁰. Octopamine is one of the neurohormones released from the pericardial organ of the decapod ^{7,45} and from neurosecretory cells, the root cells, of the lobster ^{14,28}. In the present specimens, cells similar to the root cells stained with neutral red (see Evans et al. ¹⁴), were observed (unpublished observation).

Noradrenaline was not detected in any of the nervous structures of the lobster by Sullivan et al.⁴⁵. On the other hand, the presence of noradrenaline has been shown in the cardiac ganglion of *Homarus*³⁷. In the hermit crab heart, noradrenaline and adrenaline were less potent than other monoamines (see fig. 4B), and none of the adrenergic antagonists and agonists used were effective. Therefore, adrenergic innervation seems less likely in the hearts of hermit crabs.

Serotonin is another cardio-excitatory neurohormone released from the pericardial organ of decapods ^{6,8,45}. In the hermit crabs, serotonin immunoreactivity was found in the pericardial organ but not in the heart ⁶³. It has been argued that neither 5HT nor octopamine is a transmitter of cardio-acceleratory nerves ^{7,16}. We agree with this conclusion.

Amino acids

Although glutamate has effects on the myocardium of the lobster and crab ^{3, 21}, it (at least up to 10⁻⁴ M) showed little effect either on the cardiac ganglion or on muscle cells in the present hermit crab hearts (unpublished observation). In isopods, glutamate is a candidate for the transmitter of motoneurons of the heart ^{22, 65}. Histamine, glycine, beta-alanine, and taurine did not show any effect on the heart of hermit crabs at concentrations at least up to 10⁻⁴ M (unpublished observation). In the lobster, Maynard ³¹ showed that effects of CI on cardiac ganglion activity were mimicked by gamma-aminobutyric acid (GABA). In the hermit crab heart, GABA and muscimol inhibit cardiac ganglion activity (fig. 4C). CI axon in the dorsal cardiac nerve showed anti-GABA immunoreactivity ⁶³. It has been reported

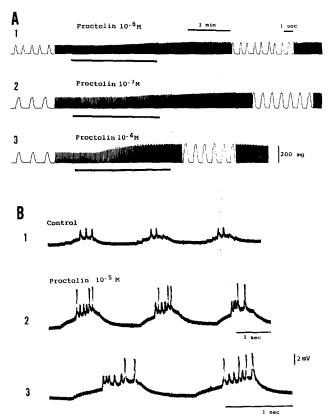
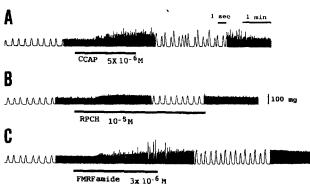


Figure 4.A Effects of proctolin on the force of heartbeat. Proctolin at 10^{-8} M (A1), 10^{-7} M (A2), and 10^{-6} M (A3) were perfused into the heart during bars. B Effects of proctolin on the cardiac ganglion activity. Intracellular recording from a LGC. B1 Control activity. B2 Maximum effects of proctolin (10^{-5} M) are shown. B3 Faster recording right after B2. Note SGC-induced EPSPs appearing in a higher frequency, a larger amplitude of burst, and a longer duration of burst than in the control. At an initial phase of this high dosage application, frequency of LGC burst transiently increased (not shown) and then settled as in B2.


that picrotoxin blocked the effects of inhibitory nerves on the heart in the lobster ^{15, 41}, in isopods ^{11, 50, 58} and in *Squilla* ⁵³. GABAergic cardiac inhibition seems common in crustacean hearts.

Peptides

Proctolin has been found in the crab pericardial organ ^{43,44}. In the lobster, proctolin immunoreactivity was found throughout the nervous system, but the bulk is in the pericardial organ ^{38,42}. Excitatory actions of proctolin on the heart have been reported in the lobster ^{4,25,35,47} and in the crab ⁵⁵. Proctolin had positive chronotropic and inotropic effects in a dose dependent manner (fig. 4A). The excitatory actions were much greater than those of other peptides tested. The threshold concentration for proctolin was about 10⁻¹⁰ M.

Effects of high dosage of proctolin at 10^{-5} M on the cardiac ganglion neurons are shown in figure 4B. During an initial phase of this perfusion, only burst rate was increased (not shown). At a later period (fig. 4B), increases in the number of LGC spikes per burst and inten-

sification of duration and amplitude of bursts were observed. Proctolin also strongly affected SGCs. This can be noticed in denser SGC-induced EPSPs prior to each LGC burst (fig. 4B3). The major effect of proctolin on the cardiac ganglion was the enhancement of SGC and LGC bursting discharges which resulted in argumentation of contraction force of the heart. Proctolin did not significantly change the amplitude of unitary EJPs. In the present heart preparations, it seems that proctolin acted prominently on the cardiac ganglion rather than on muscle cells. A similar ganglionic activation by proctolin has also been reported in the lobster 47. It is likely that the enhancement of contraction force may have resulted from increases of amplitude and duration of compound EJPs caused by an increase of the cardiac ganglion impulse rate.

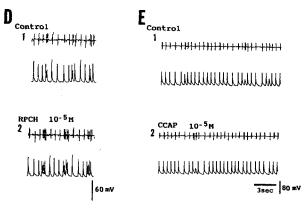


Figure 5. A, B and C Excitatory effects of CCAP, RPCH and FMR-Famide on the force of the isolated heart. Chronotropic and tonotropic effects are seen at concentrations above threshold. Irregular heartbeats were frequently observable when using isolated heart but less observable when dorsal carapace and the internal skeleton around the heart were left intact, so as not to cut ligaments suspending the heart. D and E Effects of RPCH and CCAP on the same specimen. Simultaneous recordings of extracellular impulses from the main trunk of the cardiac ganglion (upper trace) and intracellular muscle EJPs. D1 and E1 Control records in normal artificial seawater. D2 and E2 Test records respectively in RPCH and CCAP at 10⁻⁵ M. RPCH (D) and CCAP (E) increased the rate of discharge of LGC impulses, but the effects in E2 cannot be seen in this slow record. SGC impulse rate also was enhanced by RPCH and CCAP (not noticeable in these slow records). Amplitude of EJPs was little affected by the peptides tested.

Red pigment concentrating hormone (RPCH) modulated activities of the crayfish swimmeret ⁴⁰, the lobster cardiac sac ¹² and the crab gastric mill ³⁶. FMRFamide-like immunoreactivity has been found in the pericardial organ of the lobster and crayfish ^{23, 33}. Processes immunoreactive to crustacean cardio-active peptide (CCAP) were found in the pericardial organ of the shore crab ¹³. We found that these three neuropeptides were much less potent than proctolin in their actions on the heart, although we could observe positive chronotropic and inotropic effects. Threshold concentrations for CCAP, RPCH and FMRFamide were from 10⁻⁶ M to 10⁻⁵ M (fig. 5A, B and C).

As shown in figure 5D and E, the number of the cardiac ganglion spikes was increased by CCAP and RPCH at 10^{-5} M, although the amplitude of compound EJPs was not significantly changed by them. In figure 5E, CCAP produced many double or triple spikes though it is hard to see the effects in the panel in figure 5E2, recorded by a pen-writer, where shortened vertical swings in the ganglion trace indicate double or triple spikes.

RPCH-family peptides, a locust adipokinetic hormone (AKH-II) and a cockroach AKH-I-like peptide did not

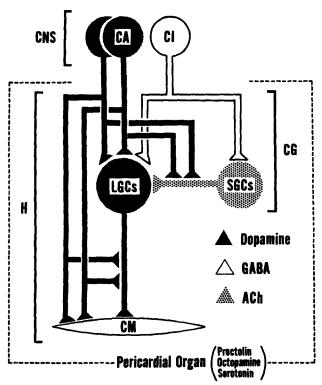


Figure 6. Schematic drawing of the cardiac nervous system of the hermit crab. The neurons of cardio-inhibitor (CI) and -accelerator (CA) are located in the central nervous system (CNS). A pair of CI axons innervates the cardiac ganglion (CG) making synaptic contact with both small and large ganglionic cells (respectively SGCs and LGCs). Two pairs of CAs innervate both the cardiac ganglion (both SGCs and LGCs) and the myocardium (CM). SGCs innervate LGCs. LGCs innervate the myocardium. Hormonal substances are liberated from the pericardial organ. H: heart. Transmitter candidates are dopamine for CAs and LGCs, GABA for CI, and ACh for SGCs. Major cardio-excitatory hormones are proctolin. octopamine and serotonin.

significantly affect heart beat. Neither the cardiac ganglion nor myocardial cells showed any perceptible modulation from AKHs at a concentration of 10⁻⁵ M (data not shown).

It is characteristic, in general, that recovery from effects of peptides was slower than from neurotransmitters.

Conclusion

In the hermit crab heart, neurotransmitters of small ganglionic cells, large ganglionic cells, cardio-accelerators and cardio-inhibitors can be, respectively, acetylcholine (ACh), dopamine, dopamine and gamma-aminobutyric acid (GABA). Proctolin, octopamine and serotonin (5HT) may be major cardio-excitatory hormones.

Acknowledgment. We thank Mr H. Ueda for supplying hermit crabs. We also thank Dr R. B. Hill for revising this manuscript. This work was supported in part by a Grant-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Science and Culture, No. 60740412 and a contribution from Shimoda Marine Research Center, No. 533.

- 1 Battelle, B.-A., and Kravitz, E. A., Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. J. Pharmac. exp. Ther. 205 (1978) 438-448.
- 2 Beltz, B., and Kravitz, E. A., Physiological identification, morphological analysis, and development of identified serotonin-proctolin containing neurons in the lobster ventral nerve cord. J. Neurosci. 7 (1987) 533-546.
- 3 Benson, J. A., Synaptic and regenerative responses of cardiac muscle fibres in the crab, *Portunus sanguinolentus*. J. comp. Physiol. 143 (1981) 349-356.
- 4 Berlind, A., Feedback from motor neurones to pacemaker neurones in lobster cardiac ganglion contributes to regulation of burst frequency. J. exp. Biol. 141 (1989) 277-294.
- 5 Carlson, A. J., Comparative physiology of the invertebrate heart. Biol. Bull. 8 (1905) 123-168.
- 6 Cooke, I. M., The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. Am. Zool. 6 (1966) 107-121.
- 7 Cooke, I. M., Studies on the crustacean cardiac ganglion. Comp. Biochem. Physiol. 91 C (1988) 205–218.
- 8 Cooke, I. M., and Hartline, D. K., Neurohormonal alteration of integrative properties of the cardiac ganglion of the lobster *Homarus americanus*. J. exp. Biol. 63 (1975) 33-52.
- 9 Cooke, I. M., and Sullivan, R. E., Hormones and neurosecretion, in: The Biology of Crustacea, vol. 3, pp. 205-290. Eds H. Atwood and D. Sandeman. Academic Press, New York 1982.
- 10 Cournil, I., Geffard, M., Moulins, M., and LeMoal, M., Coexistence of dopamine and serotonin in an identified neuron of the lobster nervous system. Brain Res. 310 (1984) 397-400.
- 11 Delaleu, J. C., and Holley, A., Neural regulation of the heart muscle in an isopod crustacean; acceleration and peripheral inhibition. J. exp. Biol. 64 (1976) 345–356.
- 12 Dickinson, P. S., and Marder, E., Peptidergic modulation of a multi-oscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment-concentrating hormone. J. Neurophysiol. 61 (1989) 833-844.
- 13 Dircksen, H., and Keller, R., Immunocytochemical localization of CCAP, a novel crustacean cardioactive peptide, in the nervous system of the shore crab, *Carcinus maenas* L. Cell Tiss. Res. 254 (1988) 347-360.
- 14 Evans, P. D., Kravitz, E. A., and Talamo, B. R., Octopamine release at two points along lobster nerve trunks. J. Physiol. 262 (1976) 71-89.
- 15 Florey, E., Further evidence for the transmitter-function of Factor-1. Naturwissenschaften 44 (1957) 424-425.
- 16 Florey, E., and Rathmayer, M., The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. Comp. Biochem. Physiol. 61 C (1978) 229-237.

- 17 Florey, E., and Rathmayer, M., Pharmacological characterization of cholinoceptors of cardiac ganglion cells of crustaceans. Gen. Pharmac. 11 (1980) 47-53.
- 18 Freschi, J. E., and Livengood, D. R., Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. J. Neurophysiol. 62 (1989) 984-995.
- Friesen, W.O., Synaptic interaction in the cardiac ganglion of the spiny
- lobster *Panulirus interruptus*. J. comp. Physiol. *101* (1975) 191–205. 20 Grega, D. S., and Sherman, R. G., Responsiveness of neurogenic hearts to octopamine. Comp. Biochem. Physiol. 52 C (1975) 5-8.
- 21 Hallett, M., Lobster heart: electrophysiology of single cells including effects of the regulator nerves. Comp. Biochem. Physiol. 39 A (1971) 643 - 648
- 22 Holley, A., and Delaleu, J. C., Electrophysiology of the heart of an isopod crustacean: Porcellio dilatatus. I. General properties. J. exp. Biol. 57 (1972) 589-608.
- 23 Kobierski, L. A., Beltz, B. S., Trimmer, B. A., and Kravitz, E. A., FMRFamide-like peptides of Homarus americanus: distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. J. comp. Neurol. 266 (1987) 1-15.
- 24 Krijgsman, B. J., Contractile and pacemaker mechanisms of the heart of arthropods. Biol. Rev. 27 (1952) 320-346.
- 25 Kuramoto, T., and Ebara, A., Neurohormonal modulation of the cardiac outflow through the cardioarterial valve in the lobster. J. exp. Biol. 111 (1984) 123-130.
- 26 Laxmyr, L., Biogenic amines and dopa in the central nervous system of decapod crustaceans. Comp. Biochem. Physiol. 77 C (1984) 139-
- 27 Lemos, J. R., and Berlind, A., Cyclic adenosine monophosphate mediation of peptide neurohormone effects on the lobster cardiac ganglion. J. exp. Biol. 90 (1981) 307-326.
- 28 Livingston, M. S., Schaeffer, S. F., and Kravitz, E. A., Biochemistry and ultrastructure of serotonergic nerve endings in the lobster: serotonin and octopamine are contained in different nerve endings. J. Neurobiol. 12 (1981) 27-54.
- 29 Matsui, K., Kuwasawa, K., and Kuramoto, T., Periodic bursts in large cell preparation of the lobster cardiac ganglion (Panulirus japonicus). Comp. Biochem. Physiol. 56 A (1977) 313-324.
- 30 Maynard, D. M., Circulation and heart function, in: The Physiology of Crustacea, vol. 1, pp. 161-226. Ed. T. H. Waterman. Academic Press, New York 1960.
- 31 Maynard, D. M., Cardiac inhibition in decapod crustacea, in: Nervous Inhibition, pp. 144-178. Ed. E. Florey. Pergamon Press, Oxford, New York 1961.
- 32 Maynard, E. A., Microscopic localization of cholinesterases in the nervous systems of the lobsters, Panulirus argus and Homarus americanus. Tiss. Cell 3 (1971) 215-250.
- 33 Mercier, A. J., Orchard, I., and TeBrugge, V., FMRFamide-like immunoreactivity in the crayfish nervous system. J. exp. Biol. 156 (1991) 519 - 538
- 34 Miller, M. W., Benson, J. A., and Berlind, A., Excitatory effects of dopamine on the cardiac ganglia of the crabs Portunus sanguinolentus and Podophthalmus vigil. J. exp. Biol. 108 (1984) 97-118.
- 35 Miller, M. W., and Sullivan, R. E., Some effects of proctolin on the cardiac ganglion of the Maine lobster, Homarus americanus (Milne Edwards). J. Neurobiol. 12 (1981) 629-639.
- 36 Nusbaum, M. P., and Marder, E., A neural role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J. exp. Biol. 135 (1988) 165-181.
- 37 Ocorr, K. A., and Berlind, A., The identification and localization of a catecholamine in the motor neurons of the lobster cardiac ganglion. J. Neurobiol. 14 (1983) 51-59.
- 38 Schwarz, T. L., Lee, G. M.-H., Siwicki, K. K., Standaert, D. G., and Kravitz, E. A., Proctolin in the lobster: the distribution, release, and chemical characterization of a likely neurohormone. J. Neurosci. 4 (1984) 1300-1311
- 39 Seeman, P., Brain dopamine receptors. Pharmac. Rev. 32 (1981) 229-
- 40 Sherff, C. M., and Mulloney, B., Red pigment concentrating hormone is a modulator of the crayfish swimmeret system. J. exp. Biol. 155 (1991) 21 - 35
- 41 Shimahara, T., The inhibitory postsynaptic potential in the cardiac ganglion cell of the lobster, Panulirus japonicus. Sci. Rep. Tokyo Kyoiku Daigaku B 14 (1969) 9-26.
- 42 Siwicki, K. K., and Bishop, C. A., Mapping of proctolin-like immunoreactivity in the nervous systems of lobster and crayfish. J. comp. Neurol. 243 (1986) 435-453.

- 43 Stangier, J., Dircksen, H., and Keller, R., Identification and immunocytochemical localization of proctolin in pericardial organs of the shore crab, Carcinus maenas. Peptides 7 (1986) 67-72
- 44 Sullivan, R. E., A proctolin-like peptide in crab pericardial organs (1). J. exp. Zool. 210 (1979) 543-552.
- 45 Sullivan, R. E., Friend, B. J., and Barker, D. L., Structure and function of spiny lobster ligamental nerve plexuses: evidence for synthesis, storage, and secretion of biogenic amines. J. Neurobiol. 8 (1977) 581-605.
- 46 Sullivan, R. E., and Miller, M. W., Actions of acetylcholine on the rhythmic burst activity of cardiac ganglion. Soc. Neurosci. Abstr. 8 (1982) 162
- Sullivan, R. E., and Miller, M. W., Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. J. Neurobiol. 15 (1984) 173-196.
- 48 Sullivan, R. E., and Miller, M. W., Cholinergic activation of the lobster cardiac ganglion. J. Neurobiol. 21 (1990) 639-650.
- Tameyasu, T., Intracellular potentials in the small cells and cellular interaction in the cardiac ganglion of the lobster, Panulirus japonicus. Comp. Biochem. Physiol. 54 A (1976) 191-196.
- 50 Tanaka, K., Yazawa, T., and Kuwasawa, K., Cholinergic and GABAergic control of the heart of isopod Bathynomus doederleini, in: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System. Eds R. B. Hill, K. Kuwasawa, B. R. McMahon and T. Kuramoto. Karger, Basel 1992.
- 51 Tazaki, K., and Cooke, I.M., Neuronal mechanisms underlying rhythmic bursts in crustacean cardiac ganglia. Soc. exp. Biol. Symp. 37 (1983a) 129-157
- 52 Tazaki, K., and Cooke, I. M., Separation of neuronal sites of driver potential and impulse generation by ligaturing in the cardiac ganglion of the lobster, Homarus americanus. J. comp. Physiol. A 151 (1983b) 329 - 346.
- 53 Watanabe, A., Obara, S., and Akiyama, T., Inhibitory synapses on pacemaker neurons in the heart ganglion of a stomatopod, Squilla oratoria. J. gen. Physiol. 52 (1968) 908-924.
- Wiersma, C. A. G., and Novitski, E., The mechanism of the nervous regulation of the crayfish heart. J. exp. Biol. 19 (1942) 255-265.
- 55 Wilkens, J. L., and McMahon, B. R., Intrinsic properties and extrinsic neuronal control of crab cardiac hemodynamics. Experientia 48 (1992) 827-834.
- Wilkens, J. L., and Walker, R. L., Nervous control of crayfish cardiac hemodynamics, in: Phylogenetic Models in functional coupling of the CNS and the Cardiovascular System. Eds R. B. Hill, K. Kuwasawa, B. R. McMahon and T. Kuramoto. Karger, Basel 1992.
- Woodruff, G. N., Dopamine receptors: A review. Comp. gen. Pharmac. 2 (1971) 439-455.
- 58 Yamagishi, H., and Terano, Y., Inhibitory nervous regulation of myogenic heart beat in juvenile Ligia exotica (Crustacea, Isopoda), in: Phylogenetic Models in functional coupling of the CNS and the Cardiovascular System. Eds R. B. Hill, K. Kuwasawa, B. R. McMahon and T. Kuramoto. Karger, Basel 1992.
- Yazawa, T., and Kuwasawa, K., The cardio-regulator nerves of the hermit crabs: anatomical and electrophysiological identification of their distribution inside the heart. J. comp. Physiol. A 154 (1984a) 871 - 881.
- Yazawa, T., and Kuwasawa, K., The cardio-regulator nerves of the hermit crabs: Multimodal activation of the heart by the acclerator axons. J. comp. Physiol. A 155 (1984b) 313-318.
- Yazawa, T., and Kuwasawa, K., Electrophysiological and pharmacological analysis of neurotransmitters in the hermit crab heart. Zool. Sci. 1 (1984c) 875.
- 62 Yazawa, T., and Kuwasawa, K., Effects of amines and their blockers on excitatory synapses in the cardiac nervous system of crustacean, Aniculus aniculus, Zool, Sci. 2 (1985) 873.
- Yazawa, T., and Kuwasawa, K., Further evidence for postulated neurotransmitters in the heart of the hermit crab. Zool. Sci. 6 (1989) 1094.
- Yazawa, T., and Kuwasawa, K., Cholinergic, catecholaminergic and GABAergic mechanisms of synaptic transmission in the heart of the hermit crab, in: Frontiers in Crustacean Neurobiology, pp. 401-406. Eds K. Wiese, W.-D. Krenz, J. Tautz, H. Reichert and B. Mulloney. Birkhäuser Verlag, Basel 1990.
- 65 Yazawa, T., Tanaka, K., and Kuwasawa, K., Effects of putative neurotransmitters on the heart of the isopod crustacean, Bathynomus doederleini. Zool. Sci. 7 (1990) 1036.

0014-4754/92/090834-07\$1.50 + 0.20/0

© Birkhäuser Verlag Basel, 1992